Structure-function relationships of phenoxazine nucleosides for identification of mismatches in duplex DNA by fluorescence spectroscopy.
نویسندگان
چکیده
The effects of the flanking sequence on the mismatch-detection capabilities of the fluorescent nucleoside phenoxazine (tC(O)) were examined in a systematic fashion, and compared to the previously reported fluorescent, phenoxazine-based nucleoside Ç(f) . We see some similarities for the two fluorescent nucleosides, for example, the emission intensity of the C-mismatched duplex is always the highest, and a three-peak pattern in the spectrum emerges when the fluorosides are base-paired with A. However, phenoxazine was only able to distinguish a mismatch from the fully base-paired duplex in 11 out of 16 flanking sequences, and was able to identify each of the mismatches in six of those sequences. Therefore, tC(O) shows poorer discrimination of mismatches than was previously reported for Ç(f) , which could be used to identify all base-pairing partners in all immediately flanking sequences, albeit in some cases by using mercuric ions to selectively quench the emission of the T-mismatched duplex. The mercuric titration might resolve the overlap of fluorescence curves of tC(O) in some flanking sequences, but not for 5'-d(CtC(O) G) and 5'-d(TtC(O) A) due to overlap of A-mismatch and G-match fluorescence curves. A pH titration was performed on Ç(f) , tC(O) and a N5-methylated derivative of tC(O) , which showed that the emergence of the three-peak pattern is associated with the de-protonation of N5 in the fluorosides. We also show that neither the α- nor β-anomer of the phenothiazine nucleoside (tC) was able to detect a mismatch in any of the flanking sequences examined.
منابع مشابه
Identification of single-base mismatches in duplex DNA by EPR spectroscopy.
The spin-labeled nucleoside (T)C, containing 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) conjugated to the exocyclic amino group of C, was used to detect single-base mismatches in duplex DNA for the first time by electron paramagnetic resonance (EPR) spectroscopy. Furthermore, the EPR spectra of the fully base-paired duplex ((T)C.G) and the mismatches ((T)C.A, (T)C.C, and (T)C.T) were signific...
متن کاملCrystal structure of a DNA containing the planar, phenoxazine-derived bi-functional spectroscopic probe Ç
Previously, we developed the deoxycytosine analog Ç (C-spin) as a bi-functional spectroscopic probe for the study of nucleic acid structure and dynamics using electron paramagnetic resonance (EPR) and fluorescence spectroscopy. To understand the effect of Ç on nucleic acid structure, we undertook a detailed crystallographic analysis. A 1.7 Å resolution crystal structure of Ç within a decamer du...
متن کاملThe Effect of Hydrophobicity and Hydrophilicity of Gold Nanoparticle on Proteins Structure and Function
The surface parameter of nanoparticles such as hydrophobicity and a hydrophilicity on protein structure and function is very important. In this study, conformational changes of glucose oxidase (GOx) in the mercaptopurine: GNPs and 11-mercaptoundecanoic acid: GNPs as a hydrophobic and a hydrophilic GNPs surface was investigated by various spectroscopic techniques, including: UV-Vis absorption, f...
متن کاملSynergistic effects of Titanium dioxide nanoparticles and Paclitaxel combination on the DNA structure and their antiproliferative role on MDA-MB-231cells
Objective(s): The objective of this investigation was to evaluate the synergisticeffect of paclitaxel (PTX) combined with titanium dioxide nanoparticles (TiO2NPs)on DNA structure and to examine the proliferation of MDA-MB-231cells.Methods: This investigation performed with Ultraviolet spectroscopy, zetapotential investigation, circular dichroism (CD) spectroscopy, ELISA ...
متن کاملThe Effect of Hydrophobicity and Hydrophilicity of Gold Nanoparticle on Proteins Structure and Function
The surface parameter of nanoparticles such as hydrophobicity and a hydrophilicity on protein structure and function is very important. In this study, conformational changes of glucose oxidase (GOx) in the mercaptopurine: GNPs and 11-mercaptoundecanoic acid: GNPs as a hydrophobic and a hydrophilic GNPs surface was investigated by various spectroscopic techniques, including: UV-Vis absorption, f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Chembiochem : a European journal of chemical biology
دوره 12 4 شماره
صفحات -
تاریخ انتشار 2011